

LA FLEXION

von Mises (N/m*2) 1.312e+008 1.203e+008 1.094e+008 9.842e+007 8.748e+007 7.655e+007 6.562e+007 4.375e+007 3.282e+007 3.282e+007 1.095e+007 1.550e+004

Nom	
Date	

DÉFINITIONS

Flexion

Effort tranchant

Soit une poutre sur 2 appuis soumise à 2 forces F_1 et F_2 , les actions aux appuis sont A et B :

Les efforts tranchants (T) sont les forces extérieures perpendiculaires à la ligne moyenne de la pièce. Dans toute section droite (S) :

T = somme vectorielle de toutes les forces situées à gauche de la section considérée.

Isolons le tronçon situé à gauche de la section (S) :

Effort tranchant $\overrightarrow{\mathbf{T}}$ =

Moment fléchissant

Dans une section droite de centre de gravité G :

M_f = moment résultant en G de toutes les forces situées <u>à gauche</u> de la section considérée.

DIAGRAMMES

Diagramme :

MOMENTS FLÉCHISSANTS

Entre A et C : • Équation : M _f =	
x varie de à	
Valeur au point A :	
Valeur au point C :	
Entre C et D : • Équation : M _f =	
x varie deà	
Valeur au point C :	
Valeur au point D :	
Entre D et B : • Équation : M _f =	
x varie deà	
Valeur au point D :	
Valeur au point B :	

Diagramme : M_f

CHARGE RÉPARTIE

La charge peut aussi être répartie sur toute la longueur de la poutre (exemple : son poids)

CHARGE COMPOSÉE

Charge composée = charge répartie + une (ou plusieurs) charge(s) ponctuelle(s). Il suffit de traiter les charges séparément, puis de les additionner. Exemple avec la poutre ci-dessus + une charge au milieu :

POUTRES ENCASTRÉES

La poutre est en équilibre sous l'action de \overrightarrow{F} et des actions subies à l'encastrement. La section la plus chargée est celle située à l'encastrement.

CHARGE RÉPARTIE

La poutre est en équilibre sous l'action de la charge et des actions subies à l'encastrement.

CONTRAINTE - RÉSISTANCE

CONTRAINTE

Elle est proportionnelle à la distance entre la fibre concernée et a ligne moyennne de la poutre :

$-\sigma$	

La contrainte est maxi quand y est maxi (y = V).

I_z est le **moment quadratique** ou moment d'inertie par rapport à l'axe Z (voir tableau page 8)

ATTENTION :

Lorsque la poutre présente une brusque variation de section, la contrainte maxi est multipliée par un coefficient K_{f} .

CONDITION DE RÉSISTANCE

Où Iz/V est le module de flexion (voir tableau page 8)

```
\sigma_{maxi} =
```


MOMENTS QUADRATIQUES : exemples

 $\frac{lx}{dx}$ et $\frac{ly}{dy}$ Moments de flexion

Profils	Ċ)imen:	sions	(mm)		Masse par mètre kg	Section cm ²	$\frac{l_x}{d_x}$	<u>k</u> d.	Moment de
	н	В	Α	Е	R ₁			cm ³	cm ³	torsion cm ⁴
80	80	42	3,9	5,9	2,3	5,95	7,6	19,5	3,00	0,89
100	100	50	4,5	6,8	2,7	8,32	10,6	34,2	4,88	1,64
120	120	58	5,1	7,7	3,1	11,2	14,2	54,7	7,41	2,78
140	140	66	5,7	8,6	3,4	14,4	18,2	81,9	10,7	4,40
160	160	74	6,3	9,5	3,8	17,9	22,8	117	14,8	6,70
180	180	82	6,9	10,4	4,1	21,9	27,9	161	19,8	9,8
200	200	90	7,5	11,3	4,5	26,3	33,5	214	26,0	13,9
220	220	98	8,1	12,2	4,9	31,1	39,6	278	33,1	19,2
240	240	106	8,7	13,1	5,2	36,2	46,1	354	41,7	25,7
260	260	113	9,4	14,1	5,6	41,9	53,4	442	51,0	34,4
280	280	119	10,1	15,2	6,1	48,0	61,1	542	61,2	45,5
300	300	125	10,8	16,2	6,5	54,2	69,1	653	72,2	58,3
320	320	131	11,5	17,3	6,9	61,1	77,8	782	84,7	74,6
340	340	137	12,2	18,3	7,3	68,1	86,8	923	98,4	92,9
360	360	143	13	19,5	7,8	76,2	97,1	1 090	114	118
400	400	155	14,4	21,6	8,6	92,6	118	1460	149	175
450	450	170	16,2	24,3	9,7	115	147	2040	203	274
500	500	185	18	27,0	10,8	141	180	2750	268	412

	• [Dimensi	ons (mn	n)	Masse par mètre kg	Section	d ₁	$\frac{l_x}{d_x}$	$\frac{l_y}{d}$
	н	В	Α.,	E		mètre kg	cm ²	cm	cm ³
I	80	45	5	8	8,38	10,7	1,61	26,8	7,38
	100	50	5,5	8,5	10,50	13,4	1,70	41,9	9,95
1	130	55	6	9,5	13,70	17,5	1,78	70,7	13,8
	150	65	7	10,25	17,90	22,9	2,05	106	21,0
	175	70	7,5	10,75	21,20	27,0	2,12	145	25,9
	200	75	8	11,5	25,10	32,0	2,22	195	32,1
	220	80	8	12,5	28,50	36,3	2,40	247	39,8
	250	85	9	13,5	34,40	43,8	2,45	331	49,1
	270	95	9	14,5	39,40	50,1	2,82	420	65,4
6	300	100	9,5	16	46,00	58,6	2,96	545	79,8
	130	30	4,5	6,3	7,25	9,24	0,75	32,5	2,9
	175	55	4,7	7,1	12,20	15,6	1,5	82,8	11,1
	200	65	5	7	14,60	18,6	1,72	113	15,4
	250	50	6,5	8	18,40	23,5	1,07	152	10,7
	270	75	5,6	9,5	22,50	28,7	2,01	238	27,9
	270	77	7,6	9,5	26,80	34,1	1,88	262	30,0
8	320	85	7	11	31,50	40,1	2,18	384,5	41,8
	320	87,5	9,5	11	37,70	48,1	2,04	424,5	44,7

 $\frac{lx}{dx}$ et $\frac{ly}{dy}$ Moments de flexion

VISUALISATION AVEC COSMOSXpress

Le module COSMOSXpress intégré dans Solidworks2003 permet de visualiser en dynamique la déformation d'une pièce seule et d'obtenir directement quelques valeurs (contrainte, déformation).

Ouvrez le fichier PoutreIPE100X1500.SLDPRT Dans le menu « Outils » sélectionnez COSMOSXpress • <u>Options</u>

- <u>Options</u>
 Système d'unités : SI
 Emplacement des fichiers : choisissez votre dosier de travail
- <u>Matériau</u>
 - Choisissez Acier allié
- <u>Déplacement imposé</u> (blocage des faces qui doivent rester fixes)
 On ne peut sélectionner que des faces de la pièce. Pour faciliter la tâche, 2 surfaces de la pièce.

On ne peut sélectionner que des <u>faces</u> de la pièce. Pour faciliter la tâche, 2 surfaces d'appui ont été créées dessous, et une surface de charge dessus.

- générer un rapport sous forme de fichier HTML, avec images et résultats chiffrés
- générer un eDrawing pour revoir l'image des contraintes

<u>NOTE</u>: à tout moment vous pouvez revenir en arrière *(cliquez « Précédent »)* pour modifier les données. Il faudra alors relancer le calcul d'analyse.

Vous pouvez également utiliser le logiciel RDM6 pour tous vos calculs d'efforts tranchants, moments fléchissants, contraintes, déformations, etc.

